Links zu weiteren Portalen

Seiteninterne Suche

Research

Collaborative Research Centres

Collaborative Research Centres at FAU

Collaborative Research Centres (CRC) and Transregios (TRs) are research institutions at universities which are awarded long-term funding where researchers work together as part of an interdisciplinary research programme. FAU is currently involved in 10 CRCs/TRs and is the co-ordinating university for 8 of these projects.

Collaborative Research Centres co-ordinated by FAU

How do diseases develop due to viruses and bacteria? CRC 796 ‘Reprogramming of host cells by microbial effectors’ is acquiring new fundamental knowledge which will help answer this key biological question. As part of this work, researchers are considering the molecular mechanisms behind the development of disease. Their main focus is on the structural and molecular bases and mechanisms of the interaction between factors which enable pathogens to intervene in the host organism and factors in the host cells which provide favourable conditions for disease.
Go to website

Additive manufacturing describes production technologies which construct components in layers according to a computer model. In the future, it will be possible to produce plastic and metal components directly from a computer at the click of a mouse, very much like printing on paper today. CRC 814 concentrates on the fundamental questions surrounding this promising technology. A better understanding of how powder behaves during production will be used to manufacture new and improved powder materials, and optimise machine design and processes.
Go to website

Synthetic carbon allotropes such as fullerenes, carbon nanotubes and graphenes are one of the most promising families of materials today. Due to their unique electrical, optical, mechanical and chemical properties, they have a great deal of potential for high-performance applications in areas of nanoelectronics and optoelectronics, in hydrogen storage, in sensors, and in polymer strengthening.
Go to website

Inflammation is an important repair mechanism that activates the body’s immune cells in order to respond to tissue stress and damage. CRC 1181 aims to gain a better understanding of the molecular processes involved in stopping this immune response after repairs have been completed. This is important as immune cells that are not deactivated continue to act on healthy tissue, leading to chronic inflammation which is manifested as conditions such as asthma or arthritis. Researchers at CRC 1181 are investigating fundamental immune mechanisms, the activation of defence cells, and the relationship between tissue structure and cell death in order to find out why the immune response is not deactivated in the case of chronic inflammation.
Go to website

The goal of CRC/Transregio 73 is to optimise components made of sheet metal. One aspect of research is how the functionality and complexity of sheet metal can be increased. The second research focus is developing new, robust and flexible manufacturing processes in the first ever attempt to combine sheet metal forming processes with processes used in bulk metal forming. This should make it possible to produce integrated components which have fewer individual parts, as well as high-performance and lightweight components which can be produced in both large and small quantities.
Go to website

The key innovative idea behind invasive computing is to introduce resource-aware programming support. This means that a programme can dynamically distribute its computing processes to neighbouring processors, in a process similar to a phase of invasion. Code with a high degree of parallelism is then run in parallel through the available (invasible) parts of the multi-processor architecture.
Go to website

CRC/Transregio 130 contributes to the fundamental understanding of autoimmune diseases by carrying out research into why the immune system turns on the body in certain diseases. As B cells are often the root cause in diseases which are based on autoimmune reactions, CRC/Transregio 130 is focusing its research on the antibody response to foreign bodies triggered by B cells and what goes wrong in this process in autoimmune diseases.
Go to website

The goal of CRC/Transregio 154 is to meet the challenges of energy reform using mathematical modelling, simulation and optimisation in order to provide solutions which set a new quality standard. New knowledge of various fields of mathematics, such as mathematical modelling, numerical analysis and simulation, or integer, continuous and stochastic optimisation are required to achieve this.
Go to website

Collaborative Research Centres involving FAU

CRC/Transregio 39 is working on a scientific basis which can be used to manufacture structural components in an economical way. These active systems have a broad range of potential applications, such as in mechanical and automotive engineering or in medical and automation technology. For these innovative products to be successful, new production technologies must be developed which combine manufacturing processes for mechanical components with actuator sensor modules enabling low-cost production of active components in series for the first time. CRC/Transregio ‘PT-PIESA’ has set itself this task and is working on solutions with a network of leading experts from across Germany.
Go to website

Monocrystalline superalloys are key materials in the manufacturing of turbine blades for modern gas turbines, such as those used in space technology and energy production. For this reason, they are as essential for modern society as they are for a sustainable energy supply. Using new monocrystalline technology in gas turbines increases efficiency while reducing harmful emissions – one of the main aspects of research by CRC/Transregio 103.
Go to website