The European Research Council – ERC – was founded by the European Commission. It offers funding programs for excellent researchers in Europe who pursue groundbreaking projects and innovative research ideas. The ERC grants are prestigious and aimed especially at supporting projects with a high scientific and social impact. These grants offer significant financial resources and allow the researchers who obtain the funding to pursue their research aims independently and at an internationally competitive level.
Dr. Sabine Eber
Research associates
Contact

Martina May
EU Research Office – euRO
Contact
ERC Starting Grants
For promising researchers who would like to establish their first independent research group. A prerequisite is 2 to 7 years postdoctoral experience.
More information on Starting Grants
Mit dem Projekt kineticSHAPES möchte Dr. Carlos L. Bassani, Wissenschaftlicher Mitarbeiter an der Professur für Modellierung von Selbstorganisationsprozessen, Simulationstechniken entwickeln, mit denen sich die Formgebung von Nanokristallen besser verstehen lässt. Die winzigen Kristalle können das Aussehen von Würfeln, Kugeln, Pyramiden, Platten und anderen definierten Formen annehmen. Die Form von Nanokristallen ist dabei entscheidend für ihre Oberfläche, Reaktivität, optischen Eigenschaften, mechanische Festigkeit und ihr Selbstorganisationsverhalten. Dadurch können wiederum neue Technologien entstehen, wie die Photokatalyse für die grüne Energiewende oder neue Arten der Krebsbehandlung.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
„Der Arbeitsalltag ist ein wichtiger Faktor für unser soziales Wohlbefinden“, sagt Prof. Dr. Adrian Meier, Professur für Kommunikationswissenschaft an der FAU. „Deshalb ist es besorgniserregend, dass die Einsamkeit von Beschäftigten weltweit zugenommen hat.“ Jeder fünfte fühle sich meist einsam, Tendenz steigend, und dies berge viele Risiken für Beschäftigte, Organisationen und Gesellschaften. Wie verändern nun die jüngsten Entwicklungen der Arbeitswelt – hybrides Arbeiten und hybride Interaktionen – das soziale Wohlbefinden? Tragen sie zur „Einsamkeits-Epidemie“ bei oder können sie Teil einer Lösung sein? Diese Fragen untersucht Prof. Dr. Adrian Meier nun in seinem vom ERC geförderten Projekt HYIHY.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
„Bislang legen wir in den Organismus lahm, um gute Bilder zu bekommen“, sagt Jana Hutter. „Mein Ziel ist es, die Bildgebungsverfahren an die Bewegung des Körpers anzupassen.“ Die Professorin für Smart Imaging and Data Profiling an der FAU forscht zu pathologieorientierter Modellierung und den physikalischen Grundlagen der Magnetresonanztomografie (MRT). Im Rahmen ihres ERC-geförderten Projekts EARTHWORM konzentriert sie sich auf Krankheiten des Darms und der Gebärmutter, beispielsweise Morbus Crohn und Ademomyose.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
In seinem vom ERC geförderten Projekt HyperScaleEM entwickelt Philipp Pelz Methoden für die atomare 3D-Bildgebung großer Volumen mithilfe von Elektronenmikroskopen. Dabei geht es ihm einerseits um sehr leichte Elemente, etwa Wasserstoff und Sauerstoff, die mit bisherigen Methoden kaum detektierbar sind. Schwer zu charakterisieren sind zweitens Legierungen, in denen die enthaltenen Elemente einen ähnlichen Kontrast zeigen und daher nur schwer voneinander zu unterscheiden sind. „Ein dritter Bereich ist die Nano- und Quantenelektronik“, erklärt Pelz. „Hier werden die Strukturen so klein, dass die dreidimensionalen Positionen und Bindungen einzelner Atome eine große Rolle spielen. Diese will ich sichtbar machen.“
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
„Ich brenne für die Katalyse. In der Technologie werden immer mehr nachhaltige Prozesse gefordert, die es noch nicht gibt oder die noch nicht gut genug funktionieren, um sie technisch anzuwenden. Und die Katalyse ist ein Werkzeug, um solche Prozesse möglich zu machen“, sagt Tanja Franken. Mit nachhaltigen Prozessen meint die Professorin vor allem solche Prozesse, die zum Ziel haben, CO2 einzusparen. Doch dafür braucht sie Katalysatoren, die auf die Abläufe maßgeschneidert sind – und genau diese möchte die Forscherin in ihrem Projekt entwickeln.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Viele Menschen leiden unter teilweisen oder vollständigen Muskellähmungen, für die es keine Heilung gibt. Neuronale Schnittstellen haben zwar das Potenzial, die motorische Funktion mit Hilfe von Assistenzsystemen wiederherzustellen. Aber selbst bei den modernsten invasiven neuronalen Implantaten, können Patient/-innen die Bewegungen der gelähmten Gliedmaßen nur sehr eingeschränkt kontrollieren – dafür ist die Übersetzung vom Gehirnbefehl an die Assistenzsysteme zu ungenau. Mit dem ERC Starting Grant möchte Alessandro Del Vecchio, Professor für Neuromuscular Physiology and Neural Interfacing an der FAU, Schnittstellen entwickeln, die die gewünschte Bewegung besser an die Prothese übertragen.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Prof. Dr. Silvia Budday erforscht das Verhalten extrem weicher Materialien unter mechanischen Einflüssen. Dazu gehöre Hydrogele, aber eben auch menschliches Gehirngewebe. Denn die Mechanik beeinflusst die Funktionsweise von Zellen und hat somit Auswirkungen auf unsere Gesundheit. Ziel des durch den ERC Starting Grant geförderten MAGERY-Projekts ist es, Schädigungen von Gehirnzellen durch mechanische Belastung, zum Beispiel bei einer Gehirn-OP, zu verhindern.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Neurodegenerative Krankheiten und neurologische Dysfunktionen wie Depression, Parkinson oder Demenz betreffen immer größere Teile unserer Gesellschaft. Für ihre erfolgreiche Behandlung bedarf es innovativer Ansätze im Bereich der Neurowissenschaften. Bisher basiert Neuromodulation in der Regel auf chronisch implantierter makroskopischer Hardware, die zahlreiche Sicherheitsbedenken aufwirft, häufig unter mangelnder Präzision leidet und keinen Zugang zu tieferliegenden Hirnregionen ermöglicht. Hier setzt das ERC Starting Grant-Projekt BRAINMASTER von Prof. Dr. Danijela Gregurec an: Ihr Ziel ist, eine innovative bimodale, drahtlose, minimal-invasive Technologie zur neuronalen Modulation zu entwickeln, mit der neurologische Erkrankungen räumlich und zeitlich präzise behandelt werden können.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Prof. Dr. Anna Nelles, die an der FAU als Professorin für Experimentelle Astroteilchenphysik forscht und gleichzeitig als Wissenschaftlerin am Deutsches Elektronen-Synchrotron DESY in Zeuthen (Host Institution für den ERC Grant) tätig ist, baut auf Grönland ein Netzwerk von Radioantennen auf, um damit extrem energiereiche Neutrinos aus dem Weltall zu belauschen. Neutrinos sind flüchtige Elementarteilchen, die sich von nahezu nichts aufhalten lassen. Sie durchqueren ungehindert Wände, Planeten und ganze Galaxien und erreichen uns daher aus den fernsten Winkeln des Kosmos und aus dem Zentrum extremer Prozesse wie etwa Supernova-Explosionen von Sternen oder aus den Staubscheiben um Schwarze Löcher.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Eine nicht-invasive Alternative für eine Darmspiegelung ist die multispektrale opto-akustische Tomographie (MSOT), ein molekular-sensitiver Ultraschall. Diese optische Bildgebungsmethode nutzt Laserlicht, um im Körper Schwingungen zu erzeugen, die dann wiederum mit hochsensitiven Detektoren wahrgenommen und zu einem Bild zusammengesetzt werden können. PD Dr. Dr. Ferdinand Knieling erforscht in seinem ERC-geförderten Projekt, wie MSOT weiterentwickelt und für die frühzeitige Lokalisierung von Entzündungsprozessen im Darm eingesetzt werden kann. Zusammen mit seinem Team hat er entdeckt, dass Farbstoffe, die auf oralem Wege verabreicht werden, die dynamische Visualisierung des gesamten Darmtrakts ermöglichen. Dieser molekularsensitive Ansatz hat den Vorteil, dass solche Kontrastmittel nicht systemisch absorbiert werden und weitgehend unverändert ausgeschieden werden.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Stefan Uderhardt was recognised for his outstanding contribution to science to date and for his particularly innovative research project. He now hopes to use the funding to investigate the ‘Internet of connective tissue’ in our body, with the aim of finding out how the body launches targeted immune reactions against threats. In his project named ‘Network Synergies in Stromal Tissue Homeostasis and Prevention of Inflammatory Disease’, Stefan Uderhardt suggests a revolutionary concept revolving around an ‘Internet of tissue’ which communicates the place, time and extent of the damage to the macrophages.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Den ERC Starting Grant will Braun nutzen, um die Auswirkungen der Digitalisierung im Gesundheitsbereich auf den Menschen genauer zu untersuchen. „Zu den aufkommenden Technologien gehören sogenannte Digitale Zwillinge“, sagt der Ethiker. Bei einem solchen Digitalen Zwilling handelt es sich um Simulationen von bestimmten Körperfunktionen beziehungsweise von Organen, die mittels Methoden Künstlicher Intelligenz erstellt wurden. Diese können in Echtzeit Vorhersagen zu Gesundheitsrisiken und Krankheitsverläufen erstellen und individuelle Feedbacks und Warnungen geben. Der Digitale Zwilling könnte auch für Tests herhalten, ob oder welche Behandlungsmethoden bei einer bestimmten Person erfolgversprechend sind. Ebenso könnten Operationen trainiert und getestet werden.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Dr. Johannes Fürst wants to significantly improve forecasting models for the development of glaciers worldwide in his project FRAGILE. He intends to use systematic modelling techniques to exploit vast quantities of satellite data, which have not been widely used to date, including satellite images from the past 20 to 30 years. The vast data available now includes fortnightly coverage of each glacier on our planet, including measurements of its current speed and surface. This information will be incorporated gradually and systematically into the new forecasting model.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
In his PUSH-IT project, Dr. Dominik Munz aims to develop new reaction concepts that will create the reactions needed in the production of medications or for energy conversion and storage. The intended ‘dream’ reactions should be made possible through charge separation, which can be understood as pushing electrons into chemical bonds.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
The aim of Dr. Benoit Merle’s project is to develop nanoindentation as a new tool for experiments with a high strain rate – through simultaneous advances in hardware and experimental methods. The new process will be able to characterize millions of times higher strain rates than previous methods – at a scale that is millions of times smaller.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Veit Rothhammer beschäftigt sich mit der Rolle von Astrozyten bei Autoimmunerkrankungen des Gehirns und des Rückenmarks wie Multiple Sklerose. Astrozyten beeinflussen schwer therapierbare Phasen der Multiplen Sklerose maßgeblich. Durch ein besseres Verständnis ihrer Funktion soll es gelingen, neue Therapieansätze für die Krankheit zu entwickeln, um die starken Schäden an Gehirn und Rückenmark zu behandeln.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
The immune system of those suffering from an autoimmune disease can no longer differentiate between the body’s own tissue and external threats and triggers an inflammatory response to defend itself, initially in one organ such as the colon or the skin. In time, the inflammation spreads from the area initially affected to other areas of the body and the disease becomes more serious. With his working group, Dr Andreas Ramming is investigating molecular mechanisms that trigger the spread of these autoimmune diseases to other parts of the body. During the last few years, Ramming and his team have been collecting data and have discovered the first molecular signatures that seem to foster this serious reaction. The team of physicians now want to investigate further to find out more about the processes behind it and to understand which cells are involved.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Steel has been used as a material for thousands of years, but it will continue to play an important role in the future. Hydrogen is set to become an important energy source and steel tanks will be required for storing it, which underlines the significance of research into advancing the development of this material. Peter Felfer has accepted the challenge. However, hydrogen is really the arch-enemy of steel. When penetrated by hydrogen, steel quickly becomes fragile and brittle. Peter Felfer is researching the mechanisms behind this process.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Two-dimensional materials have become the focus of research in the field of materials science due to their physical properties and potential applications. Gonzalo Abellán Saez is conducting research into the elements phosphorus, arsenic, antimony and bismuth. These materials boast a wide range of properties, allowing them to be used in a large number of applications. These new 2D materials are extremely suitable for use in optoelectronics, energy storage and catalysis, but could also be used to manufacture batteries or solar cells. They could also prove useful for the development of new lasers, screens and data carriers.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Stefan Sandfeld’s aim is to find a ‘language’ for dislocation microstructures. This term refers to the defects responsible for mechanical, optical, and electronic properties in metals or semiconductors. This language should enable researchers to compare and analyse various methods and data. Stefan Sandfeld received the ERC Grant at TU Freiberg.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Martin Eckstein’s research involves investigating how properties such as magnetism or superconductivity can be manipulated in extremely short periods of time using solid state structures with the aid of ultrafast spectroscopy. For example, this also involves switching between various states with varying properties, which could one day lead to new and fast communication technology. Martin Eckstein was awarded the ERC Grant at the Max Planck Institute for the Structure and Dynamics of Matter.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Björn Braunschweig investigates foams from A to Z. He investigates all levels of the hierarchy, from the minute to the gigantic, examining the molecular structure at the interface, the foam bubbles themselves along with their walls and lamellae, and finally the foam which is visible to the eye. Björn Braunschweig studies the molecular structure of interfaces. With the knowledge about all scales in the foam formation process, he hopes to control and improve the properties of a foam in a targeted way.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Modern electronic devices not only have to be increasingly powerful, they also have to be increasingly small. Molecular electronics makes it possible for incredibly small components or sensors to be made from functional molecules. Sabine Maier investigates how the configuration of molecules and the way in which they interact with one another can be controlled. She hopes to create unimaginably thin carpets of single molecules that are extremely stable and that conduct electricity.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Andreas Bräuer investigates mixture heterogenity in high-pressure processes and its influence on product characteristics. As microscopes are not suitable tools for his analysis, he must use optical measuring techniques instead. These techniques make it possible to extract information about the state of the mixture at a specific place and time at both the molecular and macroscopic levels. Andreas Bräuer has developed such instruments himself in recent years.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Each and every day our immune systems have the difficult task of distinguishing between harmful micro-organisms and the body’s own cells. The human immune system carries out a kind of co-ordinated waste separation process using specialised phagocytes. It causes the immune response against pathogens and supports the maintenance of immunological tolerance towards the body itself. Gerhard Krönke aims to develop new methods of examining co-ordinated phagocytosis and the subsequent processing of pathogens and the body’s own dead cells. These findings will allow new treatments for infectious and autoimmune diseases to be developed.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Physicist Ana-Suncana Smith examines the way biomembranes function in living cells. Biomembranes are responsible for the selective transport of molecules or the transmission of signals between cells. Many drugs can only work if the biomembrane in the cell plays its part properly. Ana-Suncana Smith aims to determine the (bio)physical principles in cells and develop a theory that she will then test initially with biomimetic membranes, i.e. synthetic membranes that mimic nature, as simplified model systems. In the second test stage, living cells will be used.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
The aim of Jana Zaumseil’s research is to improve the brightness and energy efficiency of organic light-emitting diodes. She uses so-called plasmonic nanoantennas, which are tiny particles of gold measuring only around 10 to 100 nanometres in diameter. In the same way that radio antennas amplify radio waves, these nanoantennas should amplify the light waves generated by the light-emitting diodes, thus making them illuminate more brightly. Organic light-emitting diodes can be used in the screens of smartphones and computers or in optical communication circuits.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Mathematician Aldo Pratelli deals with geometric and functional inequalities, above all with isoperimetric and Sobolev inequalities. There are several unsolved problems in this field, which Aldo Pratelli would like to solve using various methods such as geometric constructions and symmetrisation.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Jens Titze investigates the connection between deposits of sodium in the skin and the onset of high blood pressure. He was able to demonstrate that the immune system and the lymphatic vessel system are involved in regulating blood pressure in addition to the brain, blood vessels and kidneys. He and his team discovered that sodium can be stored in the skin. To detect this hidden salt, the body sends phagocytes into the skin where immune cells transport the salt out of the tissue. If this cleaning process is disrupted, the salt collects in the skin resulting in high blood pressure.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Florian Marquardt and his team carry out research into nanomechanical systems that are smaller than the width of a human hair. These systems are driven only by the pressure of light and their vibrations simultaneously retroact on the light field. The researcher hopes to record mechanical movements in the nanometre scale as precisely as possible. With this work, Marquardt hopes to open up new applications in signal and information processing, for example in optomechanical circuits or in biophysics.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
As an immunologist, David Vöhringer researches immune factors that are responsible for the development of allergies. IgE antibodies that detect substances that are actually harmless and trigger an immune response as a result play a decisive role in this respect. David Vöhringer investigates these IgE antibodies, their lifespan and how they are formed. He received the ERC Grant at LMU Munich.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Above all, Katerina E. Aifantis is interested in materials in the nanometre scale and in nanomechanics in particular. Her research is carried out in the transition between the micro and nanometre scale and investigates microstructures, electrochemical capabilities and the biocompatibility of nanomaterials. She received the ERC Grant at the University of Thessaloniki.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
ERC Consolidator Grants
ERC Consolidator Grants are awarded to promising young researchers at the start of their independent careers.
More information on Consolidator Grants
Neuronen, die Nervenzellen unseres Gehirns, sind extrem langlebig und werden kaum durch neue Zellen ersetzt. Deshalb ist es elementar für sie, dass sie ihre Funktion und ihren Zelltyp robust aufrechterhalten. „Das Verständnis der grundlegenden Mechanismen für die Langlebigkeit und das Fortbestehen von Neuronen ist der Schlüssel zur Vorbeugung und Behandlung altersbedingter neurologischer Krankheiten“, sagt Prof. Dr. Tomohisa Toda, Professor für neurale Epigenomik an der FAU.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Materialien müssen viel aushalten: Sie sind Umwelteinflüssen wie Hitze, Kälte oder Feuchtigkeit ausgesetzt, mechanische Belastungen wirken auf sie ein, und bei ihrer Herstellung muss sichergestellt sein, dass Prozessierungsschritte erfolgreich waren – dass zum Beispiel Materialverbünde zuverlässig verklebt sind. Prüfverfahren, die das Material „durchleuchten“, sind aufwändig und teuer. Nicht zuletzt deshalb werden Bauteile vorsorglich ausgetauscht oder Produkte einfach weggeworfen, anstatt sie zu recyceln, obwohl sie unter Umständen noch genutzt werden könnten.
Karl Mandel, Professor für Anorganische Chemie an der FAU und Stellvertretender Institutsleiter am Fraunhofer-Institut für Silicatforschung ISC in Würzburg, will das ändern. Er will Materie so funktionalisieren, dass sie ihre Geschichte erzählen kann. „Materialien und Bauteile sollen in die Lage versetzt werden, Umwelteinflüsse wahrzunehmen, aufzuzeichnen und uns dann mitzuteilen – und zwar über den gesamten Lebenszyklus hinweg“, erklärt er.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
With their machine learning project, Professor Kainz and his team hope to train computer programs to recognize healthy tissue structures. Artificial intelligence would then be able to pre-sort the images obtained during the diagnosis process into “probably healthy” or “possibly sick”. It goes without saying that the final decision is taken by the medical experts. With the support of the machines, however, medical staff would gain valuable time that they could then use to investigate any images deviating from the norm more thoroughly. As a knock-on effect, more patients could be treated, and patients would not have to wait so long to find out whether the images indicated that there was a problem with their health.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Prof. Dr. Aline Bozec hopes that her project will provide insights into local bone metabolism, in particular how osteocyte death is regulated at a molecular level. Osteocytes are long-living cells within the bone matrix and are by far the most common cells in bones. With her project, she aims to characterise the connections between osteocyte death and the molecular connection between osteocyte death and the stimulation of bone-destroying cells in conjunction with local bone diseases such as fractures, osteonecrosis and arthritis.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Prof. Dr. Gerhard Krönke would like to use his grant to research the early stages of rheumatoid arthritis and hopefully discover new means of treatment. Rheumatoid arthritis is one of the most common inflammatory autoimmune diseases in the world. Although there is no cure for the disease (yet), treatments are available to relieve the painful symptoms and slow progression. Prof. Krönke plans to use to develop and combine various new molecular analysis methods such as single cell sequencing and 3D imaging methods.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Prof. Dr. Henry Dube is an unusual engineer: he builds molecular machines. The challenge he faces is that if you shrink technology down to molecular size, you are left with the question of how to process information at the molecular level and operate the technology. An approach from photochemistry has proven valuable. If you shine light on a molecule it moves from state A to state B, thereby working as a ‘photoswitch’. Prof. Dube is working to build photoswitches which can be moved to not just two but a number of different positions, giving them a higher information density. This would allow molecular machines to work much more precisely and let them be used for much more complex tasks. For example, materials could be given different properties or robotics systems could execute very precise gripping movements.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Prof. Dr. Maria Rentetzi is a physicist and a historian. This is reflected clearly in her research: she focuses on the common ground between science and technology, the history of science, the history of diplomacy, political science and international relations. She researches topics such as how responsibility for defining radiation protection measures moved away from scientific organisations to diplomatic organisations such as the International Atomic Energy Agency and the effects this ‘science diplomacy’ had.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
How and why do things break? This is one question Erik Bitzek investigates in his research. Cracks form in materials when they are subject to loads. The early stages of crack formation are investigated using various materials. The purpose of this research is to gain a more comprehensive understanding of the microscopic processes at the crack tip. By using this as a basis, materials scientists are able to develop and further improve new materials that are resistant to failure.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Fuel cells can be used to generate electricity from hydrogen and air. Chemist Bastian Etzold is researching into improved catalysts for such fuel cells. He coats the catalysts with ionic fluids, and has achieved a significant increase in performance as a result. Bastian Etzold received the ERC Grant at TU Darmstadt.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Cost-effective and sustainable materials can be used in solar cells thanks to nanostructuring. However, modern technology is much less efficient than silicon cells. A possible reason for this may be the disorderly geometry of the nanostructures used. This is the starting point for Julien Bachmann’s project. He wants to design the nanoscale geometry of the material interfaces to study their properties. The greater the surface between two semiconductors, the more light is absorbed and more electricity is generated. However, the larger this surface is, the less electricity is generated. Taking this contradiction into account, Bachmann’s goal is to find the perfect geometry required to achieve the best possible properties.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Mathematician Martin Burger, project leader in the Cells in Motion (CiM) Cluster of Excellence at WWU received around one million euros of funding for five years. With his team, he develops mathematical methods for image processing and for solving inverse problems. The latter involves drawing conclusions for the cause of an observed effect using mathematical models.One example of this is computer tomography, where an image of the inside of the body is generated by the attenuation of x-rays. The funded project is examining how to combine data and observed processes in biomedical imaging.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Physicist Peter Hommelhoff investigates the interaction between laser light and matter by focusing extremely short laser pulses on the ends of very sharp metal needle points. This releases electrons from the point of the needle which are measured by Hommelhoff and his team. They observe how many electrons are emitted using how much energy. The sharp point can also serve as a sensor that Peter Hommelhoff uses to measure optical fields. This fundamental research could result in new light-controlled and extremely fast transistors that could combine the laser pulses already used in glass fibres with electronics.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
ERC Advanced Grants
The ERC awards Advanced Grants to excellent experienced researchers who have made significant achievements in the last ten years.
More information on Advanced Grants
Prof. Dr. Maria Chekhova, Professorin für Optik an der FAU und am Max-Planck-Institut für die Physik des Lichts, ist es gelungen, Quantenlichtteilchen in ultradünnen Materialien zu erzeugen. Weil diese Materialien nur wenige hundert Nanometer dick sind, gelten für sie andere physikalische Regeln – zum Beispiel kann man mit einer einzigen dieser Lichtquellen verschiedene Arten von Quantenlicht gleichzeitig erzeugen. Im neuen Projekt will Maria Chekhova nun das volle Potenzial dieser flachen, multifunktionalen Quellen ausschöpfen und in Experimenten nicht nur Paare von Lichtteilchen erzeugen, sondern viel komplexere Quantenlichtzustände, die bisher noch nie beobachtet wurden. Außerdem soll es gelingen, verschränkte Photonen in andere Quantenformen oder Lichtfrequenzen umzuwandeln.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Prof. Dr. Sjoerd Harder, Leiter des Lehrstuhls für Anorganische und Metallorganische Chemie an der FAU, und sein Team werden in ihrem Projekt Hauptgruppenmetalle wie Kalzium, Magnesium oder Aluminium im sogenannten nullwertigen Oxidationszustand untersuchen. Ein Anwendungsfeld will Harder im zweiten Teil des Projektes besonders genau unter die Lupe nehmen: die Katalyse. Denn gegen jede Erwartung sind nullwertige Hauptgruppenmetalle erstaunlich gute Katalysatoren. Das heißt, sie sind in der Lage, chemische Reaktionen zu beschleunigen, ohne dabei selbst aufgebraucht zu werden – und das unter möglichst milden Bedingungen, also bei relativ niedrigen Temperaturen, normalem Druck und geringem Energieaufwand.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Enrique Zuazua beschäftigt sich unter anderem mit partiellen Differenzialgleichungen, Kontrolltheorie und Numerik. Sein mit dem ERC Grant nun gefördertes Projekt „Control for Deep and Federated Learning (CoDeFeL)” ist stark von den Herausforderungen inspiriert, die sich zum Beispiel durch Anwendungen in der digitalen Medizin ergeben. Das maschinelle Lernen läutet eine neue Ära in der angewandten Mathematik ein und führt zu innovativen und leistungsstarken Methoden. Dadurch entstehen jedoch grundlegende mathematischen Fragen. Enrique Zuazua will diese Herausforderung aus der Perspektive anderer, intensiver erforschten Bereiche der angewandten Mathematik angehen – und zwar aus der Schnittstelle zwischen Kontrolltheorie und maschinellem Lernen.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Which combinations of materials are compatible? How secure are joins? When do components fracture or tear? Paul Steinmann has been investigating topics such as these for over 20 years. Steinmann intends to use the ERC grant to perform more detailed research into the fracture mechanics of soft materials such as rubber and tissue. Whereas hard materials can be analyzed using conventional fracture mechanics, the mechanics of soft materials is harder to predict, which makes it difficult to calculate the fracture initiation and the spread of cracks. In his research project, Steinmann intends to test new modeling approaches and algorithms that allow the spread of cracks in soft materials to be tracked numerically.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Mit der EU-Förderung von 3 Millionen Euro soll die Forschung zur Additiven Fertigung von Hochleistungsbauteilen mittels hochenergetischer Elektronenstrahlen vorangetrieben werden. Die Additive Fertigung (AF), bekannter unter der Bezeichnung 3D-Druck, wird zunehmend zur Schlüsseltechnologie der Industrie. Üblicherweise kommt bei der AF ein computergesteuerter Laserstrahl zum Einsatz, der aus flüssigen Kunststoffen oder Metallpulvern Schicht für Schicht dreidimensionale Werkstücke aufbaut – zumeist durch Härtungs- oder Schmelzprozesse.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Many people associate the giant ring at CERN in Switzerland with particle accelerators. Prof. Dr. Peter Hommelhoff’s project, however, aims to develop minute particle accelerators using photon chips. It is hoped that this will open up brand new possibilities for imaging methods or medical radiation therapies. In addition, the particle accelerator designed by Hommelhoff’s team could also be used for material analysis and fundamental research into quantum mechanics.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Peter Wasserscheid’s research focuses on liquid metal catalysis in order to release hydrogen from organic molecules. These reaction accelerators or catalysts employ liquid drops of metal attached to porous carriers that are brought into contact with the reactants. The active sites of the reaction accelerators are single metal atoms that emerge from a ‘lake’ of gallium and disappear back into the liquid after their job is done. The unique dynamics of the liquid surface of the catalyst open up new perspectives for metal catalysis. What’s interesting, for example, is that individual atoms of metal surrounded by gallium have very unusual properties, which could enable expensive precious metals to be replaced by more cost-effective metals.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Chemist Andreas Hirsch researches new materials, assembles them from molecular building blocks and then investigates their properties. He is opening up new applications in the field of electrical energy storage and solar cells. One example of this is black phosphorus whose two dimensional structures possess excellent electrical properties. This could be particularly useful for the development of new batteries, making them more powerful than the lithium-ion batteries currently used in laptops or smartphones, but also electric vehicles.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
As an expert in the field of surface research, one of Hans-Peter Steinrück’s main interests is ionic fluids. Thanks to their physical and chemical properties, they can be changed in a huge variety of ways, allowing them to be adapted especially for catalysis in specific chemical and industrial-scale processes, for example. Hans-Peter Steinrück examines their surfaces and interfaces in order to apply anti-corrosion coatings to valuable materials, for example.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
As a professor of applied analysis, Zuazua aims to combine theory and practice. His research focuses on topics such as control theory and the control of partial differential equations. He hopes to design numerical tools and software to solve important problems in this area. Industrial and interdisciplinary applications for these solutions can be found, for example, in aviation, resource management or biomedicine.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Patrik Schmuki’s research focuses on materials and structures in the nanoscale. For example, he works on special catalysts that cost-effectively produce valuable hydrogen from water or chemical waste of hydrocarbons using sunlight. The advantage of photocatalysts is that light and water are converted directly into hydrogen. During this process, it is important to reduce any losses that occur at the interfaces between the catalyst and the water or chemical substances. Patrik Schmuki investigates the materials and their structures at a range of a few nanometres.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Gerd Leuch’s research begins where light in the form of a photon is absorbed by an atom. He investigates ways of increasing the efficiency of this absorption. In addition to the goal of making interactions between light and matter more efficient, Gerd Leuch’s research is relevant for fundamental research. Greater efficiency in this area is essential for quantum computing and quantum communication.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Paul Steinmann’s research focuses on magnetosensitive elastomers. These elastomers are intelligent materials that are made of a rubbery carrier mass and are enriched with magnetic particles. Even a weak magnetic field is sufficient to shape these materials quickly and in a targeted manner. Practical applications include, for example, control and automation systems where elastomers convert electrical signals into movement.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Theatre has gained in significance worldwide in many areas of life during the last few decades, for example in crises and conflicts, social projects, corporate communication, trauma therapy and in political campaigns. This applied everyday and purpose-oriented form of theatre and its forms of expression and presentation are the focus of Matthias Warstat’s research.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Vahid Sandoghar’s goal is to detect single ions in one crystal with the help of light. It’s already possible to detect and produce images of atoms, molecules or semiconductor quantum dots. Attempts to do the same with ions in crystals have not been successful until now because the particles only emit small amounts of light. Ions in solid state structures are useful for a series of technical applications. Researchers are hoping to gain new insights into the properties of these individual particles by gaining access to them. In addition, ions could be the key to a new system for quantum optical measurements – the basis for quantum information processing. Vahid Sandoghdar received the ERC Grant at ETH Zürich.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Peter Wasserscheid conducts research on reaction accelerators or catalysts, substances that increase the speed of a chemical reaction. The aim is to modify catalysts using a thin layer of liquid salt in such a way that less waste is produced or that allows the catalysts to be used for a longer period of time without losing their effectiveness. Peter Wasserscheid is focussing on dehydration reactions in which organic molecules release hydrogen.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Among the topics the mathematician Enrique Zuazua deals with are partial differential equations, control theory and numerics. His research focuses in particular on the systematic analysis of wave propagation. This is a topic with a number of applications in such wide-ranging areas as irrigation, aviation, magnetism, design, acoustics and optics.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Andreas Hirsch investigates graphene, a nanomaterial made of a single layer of atoms. The atoms form an ultra-thin layer where the atoms are joined in a honeycomb structure. Graphene is therefore a two-dimensional crystal. Andreas Hirsch hopes to supplement the current methods of generation with a scalable chemical process. In addition, he is investigating the modification and derivatisation of the material produced. Producing soluble graphene is a key step in manufacturing transparent and conductive polymers or printable electronics.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
ERC Synergy Grants
ERC Synergy Grants are awarded to teams of between two and four promising researchers. Synergy Grants are aimed both at excellent young researchers and at established, active researchers who have already achieved outstanding research results.
More information on Synergy Grants
Astrologie, Alchemie, Geomantie, Magie und eine breite Palette weiterer Prognosepraktiken gelten als okkulte Wissenschaften, die ein wesentlicher Bestandteil der weltweiten Wissenschafts- und Technologiegeschichte sind. Ziel des Projekts von Dr. Petra Schmidl ist es, erstmals islamische und ostchristliche Quellen unter diesem Aspekt zu untersuchen. Dabei werden sich die Forschenden sowohl mit einem sehr großen räumlichen Gebiet – von der Iberischen Halbinsel bis nach Indien – auseinandersetzen, als auch mit einer großen Bandbreite an Sprachen: Die Quellen sind auf Griechisch, Syrisch, Arabisch, Persisch und Türkisch verfasst.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Kristian Franze erforscht das Wachstum von Nervenzellen. Dabei konzentriert er sich nicht primär auf die biochemischen Prozesse, sondern auf die mechanischen Kräfte, die dieses Wachstum beeinflussen. In früheren Studien hat Franze herausgefunden, dass die Steifigkeit des umliegenden Hirngewebes maßgeblich daran beteiligt ist, wachsende Nervenzellen in die richtige Bahn zu lenken. Im Projekt UNFOLD, mit dem sich der Physiker und Tierarzt gemeinsam mit spanischen, belgischen und französischen Forschern erfolgreich um einen ERC Synergy Grant beworben hat, sollen diese Arbeiten intensiviert werden. Das Konsortium nimmt vor allem die Hirnfaltung in den Blick: Bekannt ist, dass große Säugetiere mit höheren kognitiven Funktionen eine reich gefaltete Großhirnrinde besitzen – und dass Anomalien mit verschiedenen Behinderungen assoziiert sind.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Im Projekt „Directed Evolution of Metastable Electrocatalyst Interfaces for Energy Conversion”, kurz DEMI, machen sich Forschende aus Deutschland, Dänemark und der Schweiz auf die systematische Suche nach Elektrokatalysatoren für die Herstellung von Wasserstoff. Das Projektteam verfolgt eine evolutionäre Strategie: Es berechnet und simuliert aussichtsreiche Materialkombinationen, nimmt daran kleinere Veränderungen vor und prüft, ob sie sich positiv oder negativ auswirken. So folgen die Forschenden dem Pfad zum immer besseren Material. Eine Art Materialbibliothek soll es ermöglichen, Tausende Verbindungen gleichzeitig herzustellen, extremen elektrochemischen Bedingungen auszusetzen und somit sehr schnell die „Überlebensfähigen“ zu identifizieren.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Wenn die Knochen im Alter leichter brechen, steckt dahinter oft Osteoporose. Allerdings ist immer noch nicht ausreichend verstanden, wie die Krankheit entsteht und abläuft. Um dem Abhilfe zu schaffen und raschere Therapieerfolge zu ermöglichen, entwickelt ein interdisziplinäres Team von Wissenschaftlerinnen und Wissenschaftlern der FAU um Prof. Dr. Andreas Maier und Prof. Dr. Georg Schett sowie des Helmholtz-Zentrums für Materialien und Energie in Berlin (HZB) ein neues bildgebendes Verfahren. Damit soll erstmals Röntgenmikroskopie am lebenden Menschen ermöglicht werden.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Wenn die Knochen im Alter leichter brechen, steckt dahinter oft Osteoporose. Allerdings ist immer noch nicht ausreichend verstanden, wie die Krankheit entsteht und abläuft. Um dem Abhilfe zu schaffen und raschere Therapieerfolge zu ermöglichen, entwickelt ein interdisziplinäres Team von Wissenschaftlerinnen und Wissenschaftlern der FAU um Prof. Dr. Andreas Maier und Prof. Dr. Georg Schett sowie des Helmholtz-Zentrums für Materialien und Energie in Berlin (HZB) ein neues bildgebendes Verfahren. Damit soll erstmals Röntgenmikroskopie am lebenden Menschen ermöglicht werden.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
ERC Proof of Concept
Unlike ERC main grants (Starting, Consolidator, Advanced and Synergy grants), ERC Proof of Concept grants are not intended for projects focusing on fundamental research. Rather, this line of funding is aimed at researchers who have already received an ERC grant and who now wish to explore the economic and societal potential of their findings.
Further information about Proof of Concept Grants
Erkrankungen wie rheumatoide Arthritis (RA) und Spondyloarthropathien (SpA) stellen eine erhebliche Herausforderung im Gesundheitswesen dar. Die Behandlung erfordert oft ein lebenslanges Management, da die üblichen Therapien eine begrenzte Wirksamkeit aufweisen. Jüngste Forschungsarbeiten aus dem Team von Professor Ramming zeigen vielversprechende Ansätze zur Überwindung dieser Hürden.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Im Rahmen des Projekts „PlayAgain“ will die Arbeitsgruppe um Prof. Dr. Alessandro Del Vecchio eine neuronale Schnittstelle entwickeln, die Verbindungen vom Gehirn zur Unterarmmuskulatur einer gelähmten Hand stärken beziehungsweise wiederherstellen kann.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
In seiner früheren Forschung konnte Prof. Bachmann zeigen, wie die Oberflächenstruktur der Halbleiter auf kleinster Ebene die Effizienz der Solarzellen beeinflusst. Mit einem hochauflösenden 3D-Drucker, der auf 0,000001 Millimeter genau ist, will er nun systematisch austesten, bei welche Oberflächengestaltung der Halbleiter am leistungsfähigsten ist. Für den Einsatz nachhaltiger Materialien im Bereich der erneuerbaren Energien ist diese Optimierung notwendig.
Weitere Informationen finden Sie in der Pressemitteilung zur Vergabe der Förderung.
Funding
Funding from the European Research Council (ERC) was provided for these projects as part of the European Union’s “Horizon 2020” program and the EU’s seventh Framework Program (FP7-2007-2013).
The points of view and opinions expressed in the projects are exclusively those of the authors and do not necessarily reflect the point of view or opinions of the European Union or the Executive Agency of the European Research Council. Neither the European Union nor the granting authorities can be held responsible for them.
