Research Training Groups

Research training groups at FAU

Research Training Groups (RTG) support young researchers. They give doctoral candidates the opportunity to carry out their work within the framework of a coordinated research programme supported by senior researchers and professors. FAU is involved in 12 research training groups (and is the applicant university for 8 of these) and in 9 integrated research training groups.

More information (including the application requirements) is available on the Graduate Centre’s website.

Research training groups with FAU as the main applicant university

Nanotechnology provides methods of structuring materials on the smallest level which lead to new properties and functions. However, this requires modern forms of nanocharacterisation, and new and improved in situ procedures. This research training group is studying these topics. The in situ methods make it possible to investigate the formation, stability and mechanical integrity of nanostructures directly on the nanoscopic and microscopic scale and uncover the relationships between structure and functionality.

Professor Erdmann Spiecker is speaker for RTG 1896. The project is currently being funded in the second funding period until 30 September 2022.

Go to website

The young researchers in this research training group aim to find substances which interact with G protein-coupled receptors which can be used to treat diseases of the central nervous system with minimal side effects. G protein-coupled receptors (GPCRs) are proteins which play an important role in the human body in the transmission of sensory data and communication between cells and their environment. They are involved in a wide range of essential processes in the body. Serious diseases can be caused if GPCRs malfunction. New findings about these proteins could lead to promising new forms of treatment.

Professor Peter Gmeiner is speaker for RTG 1910. The project is currently being funded in the second funding period until 30 September 2022.

Go to website

How is the development of the central nervous system (CNS) related to the occurrence of neuropsychiatric and neurodegenerative diseases in late adulthood? To what extent do development processes influence resistance to CNS diseases in adulthood? What are the most important factors here? These are just some of the fundamental questions that the doctoral candidates in RTG 2162 are investigating using methods such as animal models and induced pluripotent stem cells developed from patients’ cells.

Professor Dieter Chichung Lie is speaker for RTG 2162. The project is currently being funded in the second funding period until 30 June 2025.

Go to website

How do various materials fracture? The RTG hopes to develop simulation methods to record fractures in brittle, granular and porous materials at various length and time scales. The results are to be used to develop materials specially tailored to prevent fracturing.

Professor Paul Steinmann is speaker for RTG 2423. The project is currently being funded in the first funding period until 30 June 2023.

Go to website

In view of the growing importance of information technology for society, cybercrime is becoming more and more of a threat. At the same time, there are also new opportunities for criminal prosecution, such as automated online data collection and analysis, and monitoring programmes. However, what impact does it have on the basic rights of those affected when ‘forensic computing’ is used? The research training group ‘Cybercrime and forensic computing’ brings together experts from the fields of computer science and law to systematically investigate the research area of ‘criminal prosecution of cybercrime’.

Professor Felix Freiling is speaker for RTG 2475. The project is currently being funded in the first funding period until 31 March 2024.

Go to website

The objective of this research training group is to develop new strategies for treating and preventing viral diseases by identifying cellular points of attack for antiviral treatments and inserting them into the immune system, preventing the development of resistant viruses. A particular focus is placed on training young researchers who are familiar both with antiviral chemotherapy and immune-based approaches. The doctoral candidates will receive training from medical researchers, biologists, pharmacists and bioinformatics specialists at FAU. Cooperation with the Ragon Institute in Boston, USA, a research institute set up by the Massachusetts General Hospital (MGH), the Massachusetts Institute of Technology (MIT) and Harvard University, will open up international perspectives for the researchers.

Professor Klaus Überla is speaker for RTG 2504. The project is currently being funded in the first funding period until 31 March 2024.

Go to website

The objective of this international research training group is to research electro-mechanical (piezo-electric) and electro-optical (photovoltaic and water splitting) energy conversion systems that are based on lead-free perovskite materials. The development of lead-free materials systems is a pioneering field of research due to international regulations that prohibit the use of heavy metals in electronic devices, for example. This affects the use of lead-free materials not only in renewable energy but also in high-tech applications such as autonomous wireless sensors. Research into multiscale phenomena during, for example, energy conversion, development and use of lead-free perovskite materials in new 2D and 3D processing technology, and in device integration is of particular interest. This involves the use of various synthesis, manufacturing and characterising techniques that are coupled with simulations. Scale-specific phenomena can now be investigated in a collaborative research and training environment thanks solely to this interdisciplinary research team and its combined expertise in the various length scales. The partners in this international research training group will enjoy access to a wide variety of experimental techniques and measuring devices and be able to enter into contact with partners in industry in Japan.

Professor Kyle G. Webber is speaker for the international RTG 2495. The project is currently being funded in the first funding period until 30 June 2024.

Go to website

The goal of the proposed Research Training Group is to establish an internationally competitive research and training programme to promote young scientists and medical students in the field of immunology. The analysis of defined molecular regulators using genome-wide transcriptome analysis, modern imaging techniques, transgenic mouse technologies and CRISPR-mediated genome editing will identify and characterise new fine-tuners of adaptive immune responses and immune memory. To reach our goal, we have recruited five female and 12 male researchers with internationally recognised expertise in the field of adaptive immunity from eight institutes and clinical departments at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). All researchers are supported by third-party funding and experienced in graduate training. We also offer an innovative training programme for Dr. rer. nat. candidates with a Master’s degree in life sciences. This program consists of a bi-weekly RTG Paul-Ehrlich-Club, research-specific as well as interdisciplinary hard skill and soft skill workshops, internal RTG research retreats and RTG network meetings, the RTG guest speaker series, and the RTG’s public relations programme. Furthermore, we have developed a fast-track programme that will enable six graduates with a Bachelor’s degree to gain the Dr. rer. nat. degree without the need to obtain a Master’s degree. During their one-year qualification phase, the fast-track candidates will prepare for their dissertation phase and receive extensive training in molecular biology and immunology within the Master’s programme ‘Integrated Immunology,’ attend RTG events, and participate in a research-oriented rotation in a laboratory outside Germany. To motivate medical students to participate in basic research, we will set up an innovative and structured 18-month doctoral programme. The highlights of this programme include an eight-month lab phase and a curriculum tailored to the educational requirements of each medical student. A three-member thesis advisory committee will mentor all doctoral candidates throughout their entire thesis project. To increase the international experience of our doctoral candidates, they will organise the 7th International RTG Symposium on “Regulators of Adaptive Immunity” and complete research rotations in laboratories outside Germany. We are convinced that our innovative training and research concept with hypothesis-driven projects will better prepare our doctoral candidates for professional postgraduate careers as immunologists and help them to develop into critically thinking scientists, to complete their thesis in 3-4 years, and build an international network.

Professor Hans-Martin Jäck is speaker for RTG 2599. The project is currently being funded in the first funding period until 30 June 2025.

Go to website

From January 2022 onwards, the German Research Foundation (DFG) will fund a new research training group (RTG) at FAU and Universitätsklinikum Erlangen that will investigate the impact of micro-milieu factors on the antimicrobial defence and the survival of infectious agents in tissues.

Why are many infections caused by bacteria, fungi or parasites successfully defeated by the immune system, but not others? What role do the individual cells of the immune system play in interaction with the microenvironment in the tissue and milieu factors as well as the metabolism of infected cells and the pathogens? How does this immunomicrotope vary in different infectious diseases? Answers to these questions will be provided by 14 doctoral research projects in the new RTG 2740 ‘Immunomicrotope – microenvironmental, metabolic and microbial signals regulating immune cell-pathogen interactions’, which is to receive funding from the DFG during the next four and a half years. RTG 2740 promotes collaboration between infection biology, immunology, bioinformatics and mathematics using the latest methods of high-resolution imaging, metabolomic analyses, bioinformatics and mathematical modelling.

In the structured qualification programme, 14 doctoral candidates will receive training during seminars and practical courses relevant to the topic and candidates will also have the opportunity to spend time abroad working in a renowned laboratory. A series of guest lectures with top international researchers, an annual closed-door conference, and a biennial international symposium will round off the training in the field of infection immunology and molecular microbiology provided for these young scientists, preparing them for future positions in leading national and international research institutions.

RTG 2740 ‘Immunomicrotope’ will initially receive funding of a total of 6.1 million euros from the DFG for four and a half years and can be extended for another four and a half years following a positive evaluation. In addition to a total of 7 different institutions and chairs at Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, University Hospital Regensburg is also part of a research project in the consortium.

Speaker of the consortium is Prof. Dr. Christian Bogdan, holder of the Chair for Microbiology and Infectious Disease Immunology at FAU and Director of the Institute for Clinical Microbiology, Immunology and Hygiene at Universitätsklinikum Erlangen. Prof. Bogdan will coordinate the RTG 2740 with Dr. Ilka Knippertz. Applications from interested candidates with a Master’s degree in the relevant subjects are now being accepted.

Speaker of the consortium is Prof. Dr. Christian Bogdan. The project will be funded from 1 January 2022 until 30 June 2026.

Additional Information

www.immunomicrotope.de

Prof. Dr. Christian Bogdan (Speaker GRK 2740)
christian.bogdan@uk-erlangen.de

Dr. Ilka Knippertz (Scientific Coordinator of GRK 2740)
ilka.knippertz@uk-erlangen.de

Inflammation is the key response strategy of the body to react to tissue stress and damage. The activation of the immune system related to inflammatory reaction needs closer attention. In this context particular importance is attached to the molecular checkpoints, which are responsible for stopping inflammatory reaction in time and finally for its resolution. In fact, there is still very limited knowledge on the mechanisms of resolution, however they are of central relevance for pathogenesis and therapy of chronic inflammatory diseases. Internal diseases in humans of the joints (arthritis), gut (colitis) and lung (asthma), are characterised by chronification of inflammatory reaction. The collaborative research centre ‘Checkpoints for resolution of inflammation’ aims to investigate the molecular mechanisms which cause the chronification or resolution of inflammation. The CRC 1181 initiative is a collaboration between the Faculty of Sciences and the Faculty of Medicine at the Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen and the Max Planck Institute for the Science of Light in Erlangen. It includes 19 research projects which aim to investigate the molecular checkpoints which cause the chronification or resolution of inflammation as well as innovative instruments for equal opportunities, the promotion of young researchers and networking.

Professor Georg Schett is speaker for CRC 1181. The project is currently being funded in the second funding period until 30 June 2023.

Go to website

CRC 1411 focuses on optimising nanoparticle design. For this purpose, particle syntheses are combined with novel separation methods for classifying nanoparticles. The key feature of this approach is that production is optimised in such a way that particles with engineered properties can be produced in continuous processes. These elegant approaches to property and process design replace current methods that are often highly complex and based on experiments. Thanks to this innovation, the new CRC will make important contributions to the digitalisation of the product design of particle systems. In 20 individual projects, researchers from the fields of chemical engineering, materials sciences, mathematics and physics will design, produce and characterise new nanoparticles. Designing particles with special optical properties is a central aspect of this research. Within the framework of the CRC, a research training group has been set up for doctoral research in nanoparticle design – a world first. The CRC is also breaking new ground in dealing with the large amounts of data generated in the experiments and simulations.

Professor Wolfgang Peukert is speaker for CRC 1411. The project is currently being funded in the first funding period until 31 December 2023.

Go to website

The CRC ‘Catalysis at Liquid Surfaces (CLINT)’ is pursuing a completely new approach in chemical reaction engineering by using the highly-dynamic anisotropic environment of gaseous-liquid and liquid-solid interfaces to create technical catalysts with new properties and as yet unattained productivity, stability and manageability. The aim is to combine the understanding of catalytic processes with targeted material development, which is why the research will include everything from model systems to real catalysts and incorporate in-situ methods.

Professor Peter Wasserscheid is speaker for CRC 1452. The project is currently being funded in the first funding period until 31 December 2024.

Go to website

Transregio 130 contributes to the fundamental understanding of autoimmune diseases by carrying out research into why the immune system turns on the body in certain diseases. As B cells are often the root cause in diseases which are based on autoimmune reactions, Transregio 130 is focusing its research on the antibody response to foreign bodies triggered by B cells and what goes wrong in this process in autoimmune diseases.

Professor Lars Nitschke is speaker for CRC/TR 130. The project is currently being funded in the second funding period until 30 June 2021.

Go to website

Gas will play an important role as an energy source during the energy reform that is due to take place in the coming decades as Germany moves away from nuclear energy in favour of more environmentally-friendly energy sources. There is sufficient gas available and it can be easily sourced and stored. However, ensuring efficient gas supply involves dealing with issues related to transport, network technology, market regulations and using gas in conjunction with other energy sources. The goal of CRC/Transregio 154 is to meet these challenges using mathematical modelling, simulation and optimisation in order to provide solutions which set a new quality standard. New knowledge of various fields of mathematics, such as mathematical modelling, numerical analysis and simulation, or integer, continuous and stochastic optimisation are required to achieve this.

Professor Alexander Martin is speaker for CRC/TR 154. The project is currently being funded in the second funding period until 30 June 2022.

Go to website

The aim of CRC/TRR 241 is to better understand the interaction between cells in mucous membranes and immune cells in the bowel and to develop more effective therapy methods for chronic inflammation. During the next few years, researchers will integrate findings about the regulation and function of the immune system in the bowel and current data about anti-microbial defence on the mucous membrane barrier into a new concept. The individual projects will focus in particular on the role of misdirected communication between epithelium and immune cells during the pathogenesis of IBD. The researchers’ long-term aim is to develop medication that targets the causes of bowel inflammation while retaining the ability of the immune system to fight infections and cancer cells. In addition, they hope to find diagnostic methods that predict patients’ response to therapies – a goal that not only serves to relieve symptoms quickly, but should also contribute to lowering treatment costs.

Professor Christoph Becker is speaker for CRC/TR 241. The project is currently being funded in the first funding period until 30 June 2022.

Go to website

Cooperative behaviour is a well-known phenomena, for example in the dynamics of flocks of birds. However, cooperativeness in the field of quantum mechanics has not yet been fully described. The Collaborative Research Centre/Transregio ‘Quantum Cooperativeness of Light and Matter (QuCoLiMa)’ investigates cooperativeness on the quantum level. The research group hopes to contribute to a systematic understanding in the long term of the spatial and temporal quantum correlations in mesoscopic systems in which light and matter have very strong interrelationships. Its results could enable quantum cooperativeness to be used in sensors, communication systems and in quantum computing in the future.

Professor Joachim von Zanthier is speaker for CRC/TR 306. The project is currently being funded in the first funding period until 31 December 2024.

Go to website

CRC 1483 EmpkinS (Empatho-Kinaesthetic Sensory Systems) is aimed at finding brand new ‘digital’ patient-centred options for diagnosis and treatment in medicine and psychology by combining touch-free radar, wireless and camera-based sensor technologies with innovative signal processing methods and artificial intelligence.

EmpkinS has received roughly 11 million euros of funding for the next four years. In addition to FAU, Hamburg University of Technology, the University of Bayreuth and the Fraunhofer Institute for Integrated Circuits in Erlangen are also involved in the project.

Professor Martin Vossiek is speaker for CRC 1483. The project is currently being funded in the first funding period until 31 December 2025.

Go to website

Research training groups with FAU as the co-applicant university

Over the last decades there has been a considerable increase in requirements for mathematical models, methods and efficient software for prediction, control and optimisation in various fields of application such as medicine or materials sciences. Research training group 2339 deals with all aspects of modelling in order to gain a better understanding of complex phenomena and processes that typically involve interfaces, multi-scale problems and small parameters (singular limits). The research programme addresses three main topics: interfaces, complex structures and singular limits and dimension reduction.

Professor Günther Grün is speaker for Erlangen for GRK 2339. The project is currently being funded in the first funding period until 30 September 2022.

Go to website

Blood stem cell transplants are one treatment option for certain forms of leukaemia and lymph node cancer. However, in some patients immunological reactions can occur between the transplanted cells and the healthy tissue after the transplant. This often causes damage to the skin, liver and intestines. CRC/TR 221 is therefore researching the immunological mechanisms of blood stem cell transplants. The long-term aim is to increase the tolerability of this therapy and to suppress undesirable immune reactions.

Professor Andreas Mackensen is speaker for Erlangen for CRC/TR 221. The project is currently being funded in the first funding period until 31 December 2021.

Go to website

The aim of the KoRaTo research training group is to train and support young researchers in the new field of cooperative aperture synthesis for recording fundamental geophysical parameters in the biosphere, geosphere, cryosphere and hydrosphere. Cooperative aperture synthesis is the name given to tomographic radar imaging methods that allow large volume or large surface coherent radar apertures to be synthesised by means of cooperation between a large number of individual, mobile non-coherent sub-radar apertures distributed in the 3D space. The sub-radar apertures are created using mobile drones or unmanned aerial vehicles (UAV). Research is to be carried out in the following areas:

1) Methods for coherently coupling the non-coherent sub-radar apertures in time and space;

2) Optimised time-variant apertures as well as the associated sub-apertures and trajectories of movement;

3) Tomographic imaging methods in non-homogeneous media, facilitated by cooperative spatial aperture synthesis;

4) Concepts for storing, transferring and processing data based on compressed sensing methods and resource optimisation for the sensor data of cooperative aperture synthesis.

The planned approach to aperture synthesis, which is being researched for the very first time, facilitates new tomographic radar imaging principles. In terms of resolution and information content when observing Earth, it promises to provide completely new standards in radar remote sensing in the geosciences, for example for mapping dynamic processes in the cryosphere, geosphere and biosphere. One example is the ability to locate and record structures correctly and three-dimensionally from several perspectives that are not or only partially visible in non-homogeneous media.

Professor Martin Vossiek is speaker for Erlangen for CRC 2680. The project is being funded until 31 March 2026.

Research training groups involving FAU

Wars both within countries and beyond their borders have a significant impact on the development of societies. The Byzantine Empire was in constant exchange and conflict with its neighbours and rivals due to its geographic position. This gave rise to a wide range of violent conflicts in the Latin, Slavic and Islamic worlds, and, as a consequence, a diverse range of interrelationships between these war cultures, which we define as the norms, interpretations, attributions of meaning, and reflections related to war as well as its forms and practices. The purpose of this research training group is to analyse Euro-Mediterranean cultures of war and the importance of Byzantium for them in a transcultural perspective for the first time.

Professor Ute Verstegen is speaker for Erlangen for RTG 2304 is The project is currently being funded in the first funding period until 31 March 2023.

Go to website

The observation that mechanics determine cellular processes as diverse as organ formation, inflammation and carcinogenesis or even embryo implantation is the core idea behind the DFG-funded graduate school MEƎT. The aim of the research is to illustrate mechanical feedback cycles that determine the function and self-organisation of cells and tissues in space and time.

MEƎT brings together a multidisciplinary team of experts in biophysics, stem cell and molecular biology, material science, bioengineering and medicine. The common scientific focus is on the mechanobiology of surface-lining epithelia such as the skin, which is subject to extreme mechanical stresses. The aim of RTG 2415 is to use the knowledge gained for improved tissue engineering and the treatment of human diseases.

Professor Ana-Suncana Smith is speaker for Erlangen for RTG 2415. The project is currently being funded in the first funding period until 31 December 2023.

Go to website